Green Village Delft Integration of an Autarkic Water Supply in a Local Sustainability Energy System

Jan Peter van der Hoek

Jorge Tenorio, Chris Hellinga, Jules van Lier, Ad van Wijk

- Welcome to the Green Village
- Water reuse in the Dutch context and legislation
- Design boundary conditions
- Design philosophy
- Conclusions

WELCOME GREEN O VILLAGE

THE GREEN VILLAGE MISSIONS

CLEAN ENERGY PRODUCER	Energy efficient Green Buildings Electric transport Clean Lighting systems Smart heat grids Smart DC electricity grids
WASTE AS RESOURCE	Re-use and recycling Material production from waste Circular products Circular buildings Smart waste grids
CLEAN WATER PRODUCER	Water efficient Re-use of waste water Produce from rain Produce with fuel cell Smart water grids
CLEAN AIR PRODUCER	No CO ₂ emissions into the air Reduction of fine dust in the air Removing NOx from the air Production of oxygen

Water reuse in the Dutch context and legislation

Water reuse regulations

Source: Hochstrat et al. IWA Water Reuse Conference, Barcelona, 26-29 September 2011

Dutch drinking water regulations

- All water supplied to customers must comply with the Dutch drinking water standards
- Domestic dual water supply systems:
 - only for toilet flushing
 - sources: rainwater and groundwater
 - exemption from the Ministry

Dutch drinking water production philosophy

- No use of a persistent disinfectant during production and distribution ("The Dutch approach")
- Multiple barrier concept for:
 - micro-organisms
 - organic micropollutants

Design boundary conditions

- Supply of only one water quality: drinking water
- Application of multiple barrier concept

Design philosopy

- Reducing the overall consumption of water by making efficient use of water and applying water conservation measures
- Using greywater and rainwater as raw water sources, and reclaiming them in a multiple barrier treatment concept for drinking water production
- 3. Treating blackwater anaerobically for energy recovery from wastewater

1. Efficient use of water & water savings

	Consumption NL ¹ (L/person/day)	Reduction ²	Consumption Green Village (L/person/day)
shower	48.6	35%	31.6
sink faucet	5.0	35%	3.2
laundry	15.4	35%	9.7
dishwashing	6.1	60%	2.0
toilet	33.7	Vacuum toilets	3.0

¹ VEWIN – NIPO "Water use at home 2010"

² Hofman-Caris "Trends in water conservation"

1. Efficient use of water & water conservation

Overall water use Green Village (L/day)		
Conventional systems	Efficient use & water conservation	
4,584	1,337	

Separation at source concept

Multiple barrier treatment concept

Multiple barrier treatment concept

Multiple barrier treatment concept

What do we know about the application of greywater as a source for drinking water?

- Only a few studies investigated the use of greywater as a direct source for drinking water – much more research on the use of wastewater
- Lack of knowledge about the presence and risks of organic micropollutants in greywater – much more knowledge about pathogen concentrations

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/watres

Health risk assessment of organic micropollutants in greywater for potable reuse

Ramiro Etchepare ^{a,b,*}, Jan Peter van der Hoek ^{c,d}

- Literature review into organic micro pollutants in greywater
- Conceptual framework to assess human health risks from organic micro pollutants
- Treatment goals and treatment schemes

Organic micropollutants in grey water

Class	Number of OMPs
Plasticisers and softeners	13
Preservatives	20
UV filters	7
Fragrances and flavors	46
Surfactants	55
PAHs	11
PCBs	5
Solvents	33
Organotin compounds	5
Brominated flame retardants	6
Miscellaneous	76

14 organic micropollutants in greywater that warrant further investigation

RQ > 1	0.2 <rq<1< th=""></rq<1<>
benzene	dibutyl tin
2-ethyl-1-hexanol	dichloromethane
benzenesulfonic acid methyl ester	trichloromethane
dodecanoic acid	nicotine
tetracanoic acid	acetamide
	indole
	decanamide, N-(2-hydroxyethyl)-
	sulphuric acid, dimethyl ester
	methyl dihydrojasmonate

Multiple barrier treatment concept

3. Anaerobic treatment of blackwater with energy recovery

Conclusions

THE GREEN

- An autarkic water management system seems possible
 - in compliance with the Dutch drinking water regulations
 - in line with the Dutch drinking water production philosophy
- The water management system is not autarkic with respect to energy use
- Options for a total autarkic system:
 - use of solar energy
 - use of wind energy
 - co-digestion of organic (kitchen) waste

O THE VIRTUAL GREEN

www.thegreenvillage.org

contact: j.p.vanderhoek@tudelft.nl a.j.m.vanwijk@tudelft.nl

